60 research outputs found

    Survivin family proteins as novel molecular determinants of doxorubicin resistance in organotypic human breast tumors

    Get PDF
    Introduction: The molecular determinants of breast cancer resistance to first-line anthracycline-containing chemotherapy are unknown.Methods: We examined the response to doxorubicin of organotypic cultures of primary human breast tumors ex vivo with respect to cell proliferation, DNA damage and modulation of apoptosis. Samples were analyzed for genome-wide modulation of cell death pathways, differential activation of p53, and the role of survivin family molecules in drug resistance. Rational drug combination regimens were explored by high-throughput screening, and validated in model breast cancer cell types.Results: Doxorubicin treatment segregated organotypic human breast tumors into distinct Responder or Non Responder groups, characterized by differential proliferative index, stabilization of p53, and induction of apoptosis. Conversely, tumor histotype, hormone receptor or human epidermal growth factor receptor-2 (HER2) status did not influence chemotherapy sensitivity. Global analysis of cell death pathways identified survivin and its alternatively spliced form, survivin-\u394Ex3 as uniquely overexpressed in Non Responder breast tumors. Forced expression of survivin-\u394Ex3 preserved cell viability and prevented doxorubicin-induced apoptosis in breast cancer cell types. High-throughput pharmacologic targeting of survivin family proteins with a small-molecule survivin suppressant currently in the clinic (YM155) selectively potentiated the effect of doxorubicin, but not other chemotherapeutics in breast cancer cell types, and induced tumor cell apoptosis.Conclusions: Survivin family proteins are novel effectors of doxorubicin resistance in chemotherapy-naive breast cancer. The incorporation of survivin antagonist(s) in anthracycline-containing regimens may have improved clinical activity in these patients. \ua9 2014 Faversani et al.; licensee BioMed Central Ltd

    Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma : the role of survivin

    Get PDF
    Survivin, which is highly expressed and promotes cell survival in diffuse malignant peritoneal mesothelioma (DMPM), exclusively relies on exportin 1 (XPO1/ CRM1) to be shuttled into the cytoplasm and perform its anti-apoptotic function. Here, we explored the efficacy of Selective Inhibitors of Nuclear Export (SINE), KPT-251, KPT-276 and the orally available, clinical stage KPT-330 (selinexor), in DMPM preclinical models. Exposure to SINE induced dose-dependent inhibition of cell growth, cell cycle arrest at G1-phase and caspase-dependent apoptosis, which were consequent to a decrease of XPO1/CRM1 protein levels and the concomitant nuclear accumulation of its cargo proteins p53 and CDKN1a. Cell exposure to SINE led to a time-dependent reduction of cytoplasmic survivin levels. In addition, after an initial accumulation, the nuclear protein abundance progressively decreased, as a consequence of an enhanced ubiquitination and proteasome-dependent degradation. SINE and the survivin inhibitor YM155 synergistically cooperated in reducing DMPM cell proliferation. Most importantly, orally administered SINE caused a significant antitumor effect in subcutaneous and orthotopic DMPM xenografts without appreciable toxicity. Overall, we have demonstrated a marked efficacy of SINE in DMPM preclinical models that may relay on the interference with survivin intracellular distribution and function. Our study suggests SINE-mediated XPO1/ CRM1 inhibition as a novel therapeutic option for DMPM

    SLC12A2 variants cause a neurodevelopmental disorder or cochleovestibular defect

    Get PDF
    The SLC12 gene family consists of SLC12A1–SLC12A9, encoding electroneutral cation-coupled chloride co-transporters. SCL12A2 has been shown to play a role in corticogenesis and therefore represents a strong candidate neurodevelopmental disorder gene. Through trio exome sequencing we identified de novo mutations in SLC12A2 in six children with neurodevelopmental disorders. All had developmental delay or intellectual disability ranging from mild to severe. Two had sensorineural deafness. We also identified SLC12A2 variants in three individuals with non-syndromic bilateral sensorineural hearing loss and vestibular areflexia. The SLC12A2 de novo mutation rate was demonstrated to be significantly elevated in the deciphering developmental disorders cohort. All tested variants were shown to reduce co-transporter function in Xenopus laevis oocytes. Analysis of SLC12A2 expression in foetal brain at 16–18 weeks post-conception revealed high expression in radial glial cells, compatible with a role in neurogenesis. Gene co-expression analysis in cells robustly expressing SLC12A2 at 16–18 weeks post-conception identified a transcriptomic programme associated with active neurogenesis. We identify SLC12A2 de novo mutations as the cause of a novel neurodevelopmental disorder and bilateral non-syndromic sensorineural hearing loss and provide further data supporting a role for this gene in human neurodevelopment

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Assessing the neurophysiological effects of cannabinoids on spasticity in Multiple Sclerosis

    No full text
    Background: Spasticity is a disabling symptom in Multiple Sclerosis (MS). Cannabinoids have been proven to reduce the subjective feeling of spasticity and thus have been suggested as an effective therapeutic option in MS. The neurophysiological mechanisms underlying their clinical efficacy, however, remain poorly understood. Objective: We combined neurophysiological methods to test the effect of cannabinoids on altered motor function in MS patients suffering from spasticity. We hypothesized that cannabinoids exert their beneficial effects through changes in motor cortical or spinal excitability. Methods: Eighteen cannabis-naĂŻve secondary progressive MS patients with spasticity were included in a double-blind, placebo-controlled, crossover study. Patients were treated with either placebo or Cannabis Based Medicine Extract (CBME). They were assessed clinically, as well as using functional MRI (fMRI) and electrophysiological methods. Plasma levels of tetrahydrocannabinol (THC) and cannabidiol (CBD) were tested. Results: CBME treatment did not produce significant benefits on spasticity when compared with placebo. No change in fMRI motor-evoked brain activation was observed. There was no difference in intracortical and spinal motor excitability between CBME and placebo. No correlation was found between plasma levels of THC or CBD and electrophysiological or imaging measures. Conclusion: Cannabinoids do not exert beneficial effects on MS-related spasticity through a direct action on the motor system as assessed by fMRI and electrophysiological methods
    • …
    corecore